Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 34: 101467, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37125080

RESUMO

The formalin test has been established as a method for evaluating mouse models of pain. Although there have been numerous reports of formalin-pain-induced behavior, few reports of a detailed histochemical analysis of the central nervous system focus on behavioral biphasic properties. To investigate the alternation of spinal neuronal activity with formalin-induced pain, we performed immunofluorescent staining with c-Fos antibodies as neuronal activity markers using acute pain model mice induced by 2% formalin stimulation. As a result, phase-specific expression patterns were observed. In the spinal dorsal horn region, there were many neural activities in the deep region (layers V-VII) in the behavioral first phase and those in the surface region (layers I-III) in the behavioral second phase. Furthermore, we conducted comparative studies using low concentrations (0.25%) of formalin and capsaicin, which did not show distinct behavioral biphasic properties. Neural activity was observed only in the spinal dorsal horn surface region for both stimuli. Our study suggested that the histochemical biphasic nature of formalin-induced pain was attributable to the activity of the deep region of the spinal cord. In the future, treatment strategies focusing on the deep region neuron will lead to the development of effective treatments for allodynia and intractable chronic pain.

3.
Sci Rep ; 12(1): 9634, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688905

RESUMO

Ulcerative colitis (UC) is a non-specific inflammatory bowel disease that causes ulcers and erosions in the colonic mucosa and becomes chronic with cycles of amelioration and exacerbation. Because its exact etiology remains largely unclear, and the primary therapy is limited to symptomatic treatment, the development of new therapeutic agent for UC is highly desired. Because one of the disease pathogenesis is involvement of oxidative stress, it is likely that an appropriate antioxidant will be an effective therapeutic agent for UC. Our silicon (Si)-based agent, when ingested, allowed for stable and persistent generation of massive amounts of hydrogen in the gastrointestinal tract. We demonstrated the Si-based agent alleviated the mental symptom as well as the gastrointestinal symptoms, inflammation, and oxidation associated with dextran sodium sulfate-induced UC model through Hydrogen and antioxidant sulfur compounds. As the Si-based agent was effective in treating UC in the brain and large intestine of mice, it was considered to be capable of suppressing exacerbations and sustaining remission of UC.


Assuntos
Colite Ulcerativa , Animais , Antioxidantes/farmacologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Colite Ulcerativa/patologia , Colo/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Hidrogênio/farmacologia , Camundongos , Silício/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...